US009047194B2

a2 United States Patent

Solihin

US 9,047,194 B2
Jun. 2, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

(58)

VIRTUAL CACHE DIRECTORY IN
MULTI-PROCESSOR ARCHITECTURES

Inventor: Yan Solihin, Raleigh, NC (US)

Assignee: EMPIRE TECHNOLOGY
DEVELOPMENT LLC, Wilmington,

DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 152 days.

Appl. No.: 13/818,485

PCT Filed: Jul. 18, 2012

PCT No.: PCT/US2012/047150

§371 (),

(2), (4) Date: Feb. 25, 2013

PCT Pub. No.: WO02014/014452
PCT Pub. Date: Jan. 23, 2014

Prior Publication Data

US 2014/0223104 A1 Aug. 7, 2014
Int. Cl.

GO6F 12/00 (2006.01)

GO6F 12/08 (2006.01)

U.S. CL

CPC ... GOGF 12/0808 (2013.01); GO6F 12/0824

(2013.01); GOGF 12/0837 (2013.01); GOGF
2212/6042 (2013.01); GOGF 2212/622
(2013.01); GOGF 12/0817 (2013.01)
Field of Classification Search
CPC i GOG6F 12/0808; GOGF 12/0817
USPC 711/135, 118, 165
See application file for complete search history.

First Til

S2

(56) References Cited

U.S. PATENT DOCUMENTS

5,701,432 A 12/1997 Wong et al.
6,079,008 A 6/2000 Clery, III
7,802,073 Bl 9/2010 Cheng et al.
7,805,577 Bl 9/2010 Mattina et al.
2007/0006231 Al 1/2007 Wang et al.
2009/0303245 Al 12/2009 Soupikov et al.
2010/0318763 Al 12/2010 Singh et al.
2011/0131376 Al 6/2011 Fischer
2011/0153946 Al 6/2011 Solihin
2011/0161346 Al 6/2011 Solihin
2012/0137075 Al 5/2012 Vorbach
(Continued)
OTHER PUBLICATIONS

Ros, A. et al., Cache Coherence Protocols for Many—Core CMPs,
Parallel and Distributed Computing, InTech (2010), 93-118.

(Continued)

Primary Examiner — Aracelis Ruiz
(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steven S. Rubin, Esq.

(57) ABSTRACT

Technologies generally described herein relate to cache
directories in multi-core processors. Various examples may
include, methods, systems, and devices. A first tile may
receive a request to transfer a thread from the first tile to a
second tile. An instruction may be sent from the first tile to
map a virtual cache identifier to identifiers of caches of the
first and second tiles. The thread may be transferred from the
first tile to the second tile. Thereafter, a request may be gen-
erated for a data block. After a determination that the data
block is not stored in the second tile’s cache, and that the
virtual cache identifier is mapped to the first and second cache
identifiers, a request may be sent for the data block to the first
tile.

20 Claims, 5 Drawing Sheets

Second Tile

thread to a second tile

Receive a first message, the first message corresponds to a request to transfer a

!

S4{ Send a second message from the first tile to a second tile, the second message

S6|
Transfer the thread from the first tile to the second tile

corresponds to an instruction to map a viriual cache identifier to a first cache | Receive second 88
identifier corresponding to the first cache, and to map the virtual cache identifier cetve second message
to & second cache identifier corresponding to the second cache | *
! Generate a third message corresponding to a S0
l | request for a data block
|

! s12
| | Determine that the data block is not stored in }/

the second cache

Determine that the virtual cache identifieris | 514
mapped to the first cache identifier and to the
second cache identifier

!

Receive fourth message

Send a fourth message that corresponds to a

S21 ‘

request for the data block

Send the data block from the first tile to the second tile.

|
|
E
|
|
|
|

US 9,047,194 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0173819 Al 7/2012 Solihin
2012/0246446 Al 9/2012 Solihin

OTHER PUBLICATIONS

Wentzlaff, D. et al., On-Chip Interconnection Architecture of the Tile
Processor, IEEE Computer Society, 2007, 15-31.

Hirata, H. et al., An Elementary Processor Architecture with Simul-
taneous Instructions Issuing from Multiple Threads, Proceedings of
the 19th Annual International Symposium on Computer Architec-
ture, May 1992, 136-145.

P. Chaparro et al., Thermal aware clustered micro-architectures. In
IEEE International Conference on Computer Design, Oct. 2004, pp.
48-53.

M.A. Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi Core Architectures”, Proceedings of the 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 253-264, Wash-
ington, DC, Mar. 2009.

M. Powell et al., “Architectural Core Salvaging for Hard Error Tol-
erance,” ISCA 2009, 12 pages.

T. Li et al., “Operating System Support for Overlapping ISA Hetero-
geneous Multi Core Architectures”, International Symposium on
High Performance Computer Architecture, Jan. 2010, 12 pages.

T. Sondag and H. Rajan, “Phase Guided Thread to Core Assignment
for Improved Utilization of Performance Asymmetric Multi Core
Processors”, Proc. of the 2009 ICSE Workshop on Multicore Soft-
ware Engineering, 2009, 8 pages.

International Search Report and Written Opinion for application with
application No. PCT/US12/47150, dated Dec. 18, 2012, 48 pages.

U.S. Patent Jun. 2, 2015 Sheet 1 of 5 US 9,047,194 B2

| I
|
! |
.
1) 3 i
o Ss\! “
(o] - | |
e o | |
\ -
o o © © [=) (= <t <
bt 0|)| 10| | <O <t e]
| 1 ~ ~ -~ ~ | ~ a
@
L
3
© 3 (&}
LS = s
=]
\ £
>0
~— 0O 0 [o) o] 0 I3
o | o & | © @ | 9 < | ©
A ~ Ao o - ~ o |
”»- o
[53
o
< o x
E\ ®
1
o © o
A s |92
| = (%] ~ | |
=
I /
N EE N
i AN ©
S, 7 -
<,
8 <3| .
o N~ -
] o |2 e q] | © (@®)]
A ~ | <~ | ~ = m—
wy
o hd
" R4
o >
- >
> S i >
Se | 26 | k4
O - SR =] \ >
D — U Q
= 3] 5 4 \ >
o 252N 3 RS
@ o gz . 7 o | -
= O gh \g >
[l (= &
£ >
N >
/m ’
©
‘Q/N> >
ALY
/c.—cnmq—m\chwmg:ﬁﬂ:‘ﬂ
o 8 Q1 0D A
- -

US 9,047,194 B2

Sheet 2 of 5

Jun. 2, 2015

U.S. Patent

9IS

Yo0[q ©1ep o} 10 isonbax
© 0} spuodsarod jer) o3essot YUNOJ B pusg

"9[1} PUOD3S 21} O} B[N ISIT] SY) WOIJ JD0[q BIEp o) PUSS

0TS

-

+

Y18

JOIINUIPT YOO PUOIIS
3y} 0} pue ISYHUAPT 2YIeD s11J 94 0} paddewr
SI ISIUSPI SYIED [BNIAIA S} BY) SUIULINS(]

}

208D PUOIIS Y
Ul paI0Js 10U SI }D0[q BIep Y} 1ey] SUULNA(]

CIS

A

018

J00[q BlEp ® 10])530b21
© 0} Burpuodsariod oFessaw Py} B SjeIouan)

A

881

oBessat puooas 0ATa99Y

23esSou YLINOY QAT

818

9[1) PUOIS I 0 JY1 ISII] Y} WIOLJ PRI U JAJsUes],

95

9T puod3s§ N .m~ hﬁ

ayora puodas oY) 0} SurpuodsarIon IYNHUIPT SYIBD PUOIIS € 0)

JOLTIUSPI 3YDBI [eniiiA Suy dewr o) pue “ayoes 1SI1J a1y 0) urpuodsarios Jorynuapt

9Y9E2 ISIJ B 0] JOY1IUIP] SYoeD [enuia & dew 0} UOTIONISUT Ue 0] SpuodsalIod
a8essowl PUooSs a1 “3[T} PUOISS B O} O[T} JSIIf OY} TWOIJ 9FeSsoW Puodas & pusg

¥S

A

3[1) PUOO3S © 0} PBIIY)
® Jojsuen 01 1sonbal e 0 spuodsorioo aFessow sI1y oT) 0Fessow 1SIL] € SA100SY

S[LL 3511

[

US 9,047,194 B2

Sheet 3 of 5

Jun. 2, 2015

U.S. Patent

910

Y00]q vep 3y} IoJ 1sonbax
B 0] spuodsa1100 Tey) 93essoW YLmMOoJ © pusg

oy

A

*oI1 PUOOSS SN} 0} AN 1S} Y} WOIJ JO0[q BIEp Y} PUSS

[y
-

oBeSSOUI TLINOJ SA1200Y]

=

™~
020

N

810

P10~

V
I9TJIIUSPI SYOELD PUOIDS

91} 0} PUB IDIJTJUSPI AYoeD Is1 ay} 0} paddew
ST IOTJTIUSPT YOED [eNIIA Y} 18T} SUTULIS(]

[y

aYoED Puosas Ayl

[410) Ul PaI0]s JOU S YO0[q Blep 33 JBY) SUTULINA(]

[y

J00]q BIEp © JOJ 1sonbar

e 0] Surpuodsa1100 a3essowr P} € S1RIOUL)

010

' ot

oZessow1 puooas SAIOY

S[TL Puodsg m .wﬁ,m_” S ISH

°[0
PUO9SS 2Y) 0} 91} ISITJ S} WOI] PESI) S} ISJSURI],

>
-

ooRO PUoas 2y} 0} SurpuodsarIo IFUIPT SYOEBD PUODIS B 0}

ISIUIPT SYIED [emIA oy dewr 0] pue ‘ayoed 1s11y a1 03 Surpuodserios Iatynuapt
9U9B2 1SI1J © 0] JOITIUSPI 2YoLd [eniia e deur 0) UONONISUL Uk 0) spuodsoiod
oBeSSOUI PUOI2S Y} ‘OfI1 PUODAS © 01 3[1} JSIIT I} WoIf FLSSIUI PUOIIS B PUSS

T

90

=0

3]1} PUOD3S © O] PEAIY) B I19JSUL] 0} 1sonba1 e 0
Spuodsaniod 23eSSIUT ISIN Y} ‘9FLSSOW 1SIIJ B 9AI00Y

<0

US 9,047,194 B2

Sheet 4 of 5

Jun. 2, 2015

U.S. Patent

| wnipsw _ | wnipaw _ | wnipaw ajqepesl _

| a|qepIodI Yy _ /Indwosy |

||||||||| | _ _ S0g,

*3[13 PUOISS ST 03 3[1 ISII Sy Woy JI0[q elep 3Y1 JuIpuss ‘oFessow YuNoJ oy} 03 asuodsal Ul 10] SUOHONISUI UOW JO U

10)jo0[q e1ep a1 Ioj 1sanbat e 0] spuodsariod

23essouI YLNOJ oy UIIOUM 3[1) 3SI 2y} 01 S[1) PUOISS) Lol SFessaW YN0 & FUIPUIS ISLHUIPI SYOLD PU0IIS Y] O]

pUe JORIUSPI 9oL 151 913 03 paddew s1 IOYNTAPE SYoED [ENIIA 1) Jer) SUIUTHLINAP 0} a5u0dsaI UI 0] SUOHONLSUT 3I0UI I0 SUQ)
JO “ITJIIUSP] ST[OL3 PUOSIS Sy} 0} PUE ISYUSPI 3oL 351§ a1 03 paddewu st I91USPT SYIES [emIA a1 Jeys SururuLaop

PUE ‘9y2ed PUOIas Y} U PAIOIS 10U ST YD0[q BIEP YY) 181]) SururuLissp ‘afessow paij) oy 03 ssuodsal Ul I0J SUOTIONLNSUT 2IOUL IO SUQ
30 $Y20[q vIep ® J0J 1sonbai © 0} spuodsariod

93essatll PIFp 9 WISIOYM ‘3[1} PUOISs Sy 18 95essatu pay) € Furesouss ‘peony) oyl SULLISISIRY JO1I8 JOT STOHONISUT S10UI 10 5UQ)
10 !3[1} puodas oY) 03 91} ISII] YY) WO PRaNy A1) SUTLdISURY ‘9Fessat puodas oy Jurpuss IajJe Jo] SuoNINISUl SIOW IO JUQ

10 fay0ed puodss) 01 SurpuodsaIIod ISYNUSP SUYDED PUCIIs E 0] ISYHUIPI AYded enuIA oY) dew 0) pue ‘ayoes ISy

913 03 BUIpUOdsoLI09 JSYIUSPI SUJBI ISIIF B 01 JOLIIUIPI SYIED [eiA & dewr 0) UOLONLSUT Ue 0} SPUodsaLIod 9Fesssu puodss i
UI2IoyA “OTI) PUODaS B 0} 9 ISIYy oY) Woyy sFessaur puodas & JuIpuas ‘aFessaw 18Iy oty 03 asuodsal Uf JOJ SUOLIDNYSUI AI0W IO FUQ
10 £01[383 Pu02as © SUIALY Sf13 PUCOSS ST ‘OY0LD ISIY B SuLARY 3[1) ISIJ S} Of1) PU0ISS DY} 0} S[11 ISIL} SY3 WOLJ PRaIY) ay

I9jsuen 03 3s3nbal e 0} spuodsarios aSessour 1SIT AU} UIDIOYM “O]1) ISIIJ O3 J2 2FuSSOU JS41J & FUIAID3] 10] SUOTIONYSUI 310U I0 dUQ)
I0 $a1p J0s$9901d 2J00-N[NUK © U 3[1} PUOIIS 0} 3[1) JSIY B WOI] Pray) & SULLIISURI} 10] POYIOW € 0] STORONYSUI 10Ul 10 uQ

JO 2U0 ISB9] 1Y

¥0¢

‘wnipaw Buueaq eubis ¥ Zog

‘Jonpoid weiboid toindwod vy

0g

US 9,047,194 B2

Sheet 5 of 5

Jun. 2, 2015

U.S. Patent

- - - - - - """ """ ""-\"""""""""”""”""”"”"”"”"” =~ 1
_ _
| (FEY) SNQ 30V4HILN| IDVHOLS I
_ - e = = _
— . > -~ > - > —
P
(zov) ! PN (oep) (a@H “b-e) (ana/ao “69) “
{s)zonag I | (vor) (o9t) \—y] ZFT0uINOD (get) 3ovoLs (9ep) FIovMoLS
ONILAANOD I\ / (s)Laod nHv Y3TTOYLNOD PR 30v4d3aLN)SNg 31aYAOWIY-NON I1aVAOINIY |
YIHLO ["WNCD MHOMLIN N— I
| _
_ - _
r
| |
|
_ (9s¥) _ <7 \ |
_ \(Hv H3ITI0HLNOD | L (gzb) D
_ ERVANEIN| | B v1lv(Q AYOLo3NIa L
R 131Tvavd = [HITIONLNOD ANOWIN JHOVD TVNLYIA L
{ (s)1uod P = | MH
T o — —) 2 _ ¥ep) vIva Avaoond | “
>
“ \(Hv Y3TI0HLNOT) 2] | ©17) “ |
_ ETNANEIN] ® | Sy3L1s193Y (92) L
I3 @
m .mv_m | S B _ o) WHLHODTY |
3 | viv AHOLOTHIA
| (Fvp) STOVIUIIN| TvHIHdEad = _ dsa/nda/mnv oV TYALHIA |
0D HOSSIO0Nd
NOILVOI1dd
“ (0S+) LINN _ (%)) GT%)) ey v “ “
- ONISSIO0Hd | JHOVD IHOYD)
[N T Cany _ Z 13737 L 13ATT wom¢ ||
W3LSAS ONILYYIIO

 — mmm_wn_ A _ dsa/ordr _ _

—" - _ WYR/NOY |
_ (87%) LINN | 7o) 9053009 .
[AHV DNISSIO0Nd | | 1
| SOIHAVHE) _ L
_ _
_ _

US 9,047,194 B2

1
VIRTUAL CACHE DIRECTORY IN
MULTI-PROCESSOR ARCHITECTURES

CROSS REFERENCE TO RELATED
APPLICATION

This application is a U.S. National Stage Application filing
under 35 U.S.C. §371 of International Application No. PCT/
US2012/047150 filed Jul. 18, 2012, the entirety of which is
hereby incorporated by reference.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this application
and are not admitted to be prior art by inclusion in this section.

In multi-core processor architectures, multiple processor
cores may be included in a single integrated circuit die or on
multiple integrated circuit dies that are arranged in a single
chip package. A cache may be used to store data for access by
one or more of the processor cores. The data can be a subset
of data stored in a larger memory that is typically located
outside of the die. Each processor may be provided with a
cache that stores data for the processor. As a single piece of
data may be stored in multiple caches, a cache coherence
protocol may be configured to keep track of the data stored in
multiple caches. The cache coherence protocol may be con-
figured to help ensure that multiple requests for data consis-
tently result in the same data being returned.

SUMMARY

In some examples, a method for transferring a thread from
a first tile to a second tile in a multi-core processor die is
generally described. The method may include receiving a first
message at the first tile. The first message may correspond to
arequest to transfer the thread from the first tile to the second
tile. The first tile may have a first cache. The second tile may
have a second cache. The method may further comprise, in
response to the first message, sending a second message from
the first tile to a second tile. The second message may corre-
spond to an instruction to map a virtual cache identifier to a
first cache identifier corresponding to the first cache, and to
map the virtual cache identifier to a second cache identifier
corresponding to the second cache. The method may further
comprise, after sending the second message, transferring the
thread from the first tile to the second tile. The method may
further comprise, after transferring the thread, generating a
third message at the second tile. The third message may
correspond to a request for a data block. The method may
further comprise, in response to the third message, determin-
ing that the data block is not stored in the second cache, and
determining that the virtual cache identifier is mapped to the
first cache identifier and to the second cache identifier. The
method may further comprise, in response to determining that
the virtual cache identifier is mapped to the first cache iden-
tifier and to the second cache identifier, sending a fourth
message from the second tile to the first tile. The fourth
message may correspond to a request for the data block. The
method may further comprise, in response to the fourth mes-
sage, sending the data block from the first tile to the second
tile.

In some examples, a system effective to send a data block
from a first tile in a multi-core processor die is generally
described. The system may include a first tile. The first tile
may include a first processor in communication with a first
cache. The first processor may be effective to send a first

10

15

20

25

30

35

40

45

50

55

60

65

2

message, from the first tile to a second tile in the die. The first
message may correspond to an instruction to map a virtual
cache identifier to a first cache identifier. The first cache
identifier may correspond to the first cache. The first message
may further correspond to an instruction to map the virtual
cache identifier to a second cache identifier. The second cache
identifier may correspond to a second cache in a second tile.
The first processor may further be effective to transfer a
thread from the first tile to the second tile. The first processor
may further be effective to receive a request from the second
tile for a data block. The first processor may further be effec-
tive to send the data block to the second tile.

In some examples, a method for requesting a data block
from a first tile with a first cache by a second tile with a second
cache in a multi-core processor die is generally described.
The method may comprise receiving a first message from the
first tile at the second tile. The first message may include an
instruction to map a virtual cache identifier to a first cache
identifier corresponding to the first cache, and to map the
virtual cache identifier to a second cache identifier corre-
sponding to the cache. The method may further include, after
receiving the first message, receiving a thread at the second
tile from the first tile. The method may further include, after
receiving the thread, generating a second message at the
second tile. The second message may correspond to a request
for the data block. The method may further include in
response to the second message, determining, at the second
tile that the data block is not stored in the second cache and
determining, at the second tile, that the virtual cache identifier
is mapped to the first cache identifier and to the second cache
identifier. The method may further include sending a third
message from the second tile to the first tile. The third mes-
sage may correspond to a request for the data block.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of this disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

FIG. 1 illustrates an example system that can be utilized to
implement a virtual cache directory in a multi-processor
architecture;

FIG. 2 depicts a flow diagram for an example process for
implementing a virtual cache directory in a multi-processor
architecture;

FIG. 3 depicts a signal flow diagram for an example pro-
cess for implementing a virtual cache directory in a multi-
processor architecture;

FIG. 4 illustrates a computer program product that can be
utilized to implement a virtual cache directory in a multi-
processor architecture; and

FIG. 5 is a block diagram illustrating an example comput-
ing device that is arranged to implement a virtual cache direc-

US 9,047,194 B2

3

tory in a multi-processor architecture; all arranged according
to at least some embodiments described herein.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

This disclosure is generally drawn, inter alia, to methods,
apparatus, systems, devices, and computer program products
related to a virtual cache directory in multi-processor archi-
tectures.

Briefly stated technologies are generally described for
cache directories in multi-core processors. Various examples
may include, methods, systems, and devices. A first tile may
receive a request to transfer a thread from the first tile to a
second tile. An instruction may be sent from the first tile to
map a virtual cache identifier to identifiers of caches of the
first and second tiles. The thread may be transferred from the
first tile to the second tile. Thereafter, a request may be gen-
erated for a data block. After a determination that the data
block is not stored in the second tile’s cache, and that the
virtual cache identifier is mapped to the first and second cache
identifiers, a request may be sent for the data block to the first
tile.

FIG. 1 illustrates an example system that can be utilized to
implement a virtual cache directory in multi-processor archi-
tectures arranged in accordance with at least some embodi-
ments described herein. An example system 100 may include
adie 102 including a plurality of tiles. Focusing on tile 118 for
illustration, each tile 118 may include a cache 110, and a
processor or processor core (hereinafter referred to as “pro-
cessor”) 112. Cache 110 may include data structures such as
a directory 114, and/or a cache translation table 116. Proces-
sor 112 may be adapted to process data including code (here-
inafter both data and code referred to as a “data block™).
Cache 110 may be configured to store a data block local to
processor 112.

As is described in more detail below, when processor 112
requests to access a data block, such as to write to or read from
a data block that is stored in another tile, processor 112 may
initially look in cache translation table 116. An example
cache translation table may include a virtual table mapping
virtual cache identifiers to physical tile identifiers. Processor
112 may be configured to search cache translation table 116 to
determine if the tile requesting the block is mapped to the
same virtual cache ID as another tile. If the requesting tile
(e.g., a first tile) is mapped to the same virtual cache as
another tile (e.g., a second tile), the requesting tile may send
a request to the other tile which may result in quicker access
to the data block.

Die 102 may include a matrix (e.g., array) of tiles 118,
130-144 including respective caches 110, 150-164. Each tile
may also include one or more of a respective processor 112,
and caches including data structures such as directory 114,
and/or cache translation table 116. In some examples, each

25

40

45

4

tile in die 102 may be substantially the same as in a homog-
enous arrangement, while in some other examples, some tiles
may be different as in a heterogeneous arrangement. Die 102
may be arranged in communication with another die 103 so
that data may be shared among a plurality of dies.

Directory 114 may be implemented as a data structure that
identifies (e.g., indexes) a location associated with each data
block that is stored in the tiles of die 102. Directory 114 may
be located in a single tile on die 102 or distributed among
many or all tiles. If directory 114 is distributed, for example,
a first range of addresses (such as 0x0000-0x1000) may be
stored in a first tile, while a second range of addresses (such as
0x1001-0x2000 or 0x0500-0x1500) may be stored in a sec-
ond tile, etc. Directory 114 in the figure may illustrate a first
portion of a directory for the entire die where that first portion
may be stored in tile 118 and additional portions of the direc-
tory may be stored in other tiles such as tiles 130, 131, 132,
etc.

Directory 114 may include a list of blocks stored in die 102,
along with a state of the block and which caches may be
sharing the block. In some examples, directory 114 may use
a protocol such as MESI, MOESI, MSI, MOSI etc. In these
types of protocols, directory 114 may be utilized to keep track
of sharing states such as: modified (M) such as when a cache
line has been modified since the line has been moved from a
main memory; exclusive (E) such as when a cache line is only
in one cache but the line matches a main memory; shared (S)
such as when the cache line may be stored in other caches and
the line matches the main memory; invalid (I) such as when
the cache line is invalid; and/or owned (0) such as when the
indicated cache line includes the most recent copy of the data.

Directory 114 may also be configured to store coherence
information relating to virtual caches. In an example, a virtual
cache may correspond to two physical caches. Data may be
moved between these two physical caches and one corre-
sponding virtual cache may be affected. In one example trans-
fer, a thread may be moved from tile 118 to tile 131 without
changing the directory information since virtual cache 1D 0
does not change.

In some examples, cache translation table 116 may include
a two dimensional table with physical cache ID columns 166
and virtual cache ID rows 168. As a default, indicators 170
may indicate that each virtual cache ID is mapped to one
physical cache ID. For example, as shown, virtual cache ID 0
is mapped to physical cache ID 0. Similarly, virtual cache IDS
1-15 are each mapped to physical cache IDS 1-15 respec-
tively. Physical cache IDS 0-15 could correspond to caches
110 and 150-164.

In an example, tile 118 may receive a message correspond-
ing to a request to transfer 182 a thread being processed from
tile 118 to tile 131. A transfer may include, for example,
scheduling, sending, moving, assigning and/or migrating a
thread. Such a request could occur, for example, to facilitate
temperature control in die 102. In response to request 182, tile
118 may send a broadcast message 176 to tiles in die 102
instructing tiles in die 102 to update their respective cache
translation tables 116.

Cache translation tables 116 may be updated as shown in
FIG. 1. Cache ID 0 may correspond to tile 118 and cache ID
2 may correspond to tile 131. Cache translation table 116 may
be updated to include an additional indication 172 to indicate
that virtual cache ID 0 now maps to physical cache ID 0 (tile
118) and also to physical cache ID 2 (cache 131). When tile
118 receives an acknowledgement 184 from tiles in die 102
that the tiles have received message 176, tile 118 may then
transfer the thread from tile 118 to tile 131 as show by arrow
174. Updating the cache translation tables 116 redefines what

US 9,047,194 B2

5

physical caches a virtual cache represents. This avoids the
needs for cache coherence states or sharing information to be
updated because from the point of view of the coherence
protocol, both the state and sharing information of a data
block have not changed.

After the transfer is complete, tile 131 may generate a
message corresponding to a request for a data block such as a
block X, which may result in a cache miss. In response to the
cache miss, processor 112 in tile 131 may send a message to
the directory 114, where the message corresponds to a request
for block X. In the example, directory 114 may be in another
tile 143. Processor 112 of tile 143 may receive the request,
analyze directory 114, and determine that block X is mapped
to virtual cache ID 0. Virtual cache ID 0, according to the
cache translation table 116, may be mapped to physical cache
IDs O (tile 118) and 2 (tile 131). Tile 143 may then send a
message corresponding to a request to tile 118 to send data
block X.

In another example where tile 131 experiences a cache
miss, tile 131 may be configured to analyze cache translation
table 116 in tile 131. Tile 131 may determine that both the
cache in tile 131 and the cache in tile 118 are mapped to the
same virtual cache (e.g., virtual cache 0). This determination
of'the mapping may indicate that a thread was recently trans-
ferred from tile 118 to tile 131 and thus tile 118 may have the
requested block.

In response to this determination of mapping, processor
112 in tile 131 may send a message 186 to tile 118. Message
186 may correspond to a request for block X. Tile 118 may
receive message 186. In response to message 186, tile 118
may send 188 block X to tile 131. In one example, tile 118
may thereafter invalidate its copy of block X. Tile 118 may
invalidate block X by indicating in cache 110 that block X is
now invalid. Tile 118 does not need to send information to
directory 114 indicating that block X is now invalid, because
directory 114 may record the state with the highest read or
write privilege for virtual cache 0. For example, if tile 118
stores block X in “Invalid” state in cache 110, while tile 131
stores block X in “Shared” state in cache 151, the directory
114 records that block X is cached in virtual cache O in
“Shared” state.

Subsequently, in an example, tile 131 may request to write
to block X. Tile 131 may send a message to directory 114 in
tile 143. The message may correspond to a request for per-
mission to write to block X. Processor 112 in tile 143 may
receive the request to write to block X. Tile 143 may then read
cache translation table 116 and determine that virtual cache 0
may be mapped to physical cache O (tile 118) and mapped to
physical cache 2 (tile 131). Tile 143 may then send an invali-
dation message 180 to tile 118. Invalidation message 180 may
instruct tile 118 to invalidate block X in cache 110 oftile 118.
Tile 118 may receive message 180 and may send data block X
totile 131 if tile 131 does not already have a valid copy of data
block X. Tile 118 may mark block X as invalid in its cache
110. Tile 143 may then update a coherence status of block X
in directory 114 as being “modified” or “exclusive/modified”.

In another example, tile 140 may request to write to data
block X. Tile 140 may send a request to directory 114 (in tile
143) to write to data block X. Directory 114 may indicate that
block X is stored in virtual cache 0. Cache translation table
116 may indicate that virtual cache 0 is mapped to physical
caches IDs O (tile 118) and cache ID 2 (tile 131). Tile 143 may
then send requests to both tiles 118 and 131. The requests may
request block X from tiles 118 and 131. Tile 143 may then
send an invalidation message to both tiles 118 and 131 invali-
dating block X. Tile 143 may then update a status of block X
in directory 114 as being “modified” or “exclusive/modified”.

10

15

20

25

30

35

40

45

50

55

60

65

6

Transmission (or sending) of data block X may include a
number of operations such as, for example, copying at least a
part of the data block X, moving at least a part of the data
block X, or some combination of copying or moving over
time, etc. Moreover, read or write operations may include
additional technical requirements for data communications
such as asserting a read or write request line when address
and/or data is available for communication over a bus, or by
sending messages over an interconnection network, where
the read/write operations may be either synchronous (e.g.,
clock based) or asynchronous (e.g., read/write acknowledge
based).

Over time, as a thread may have moved from one tile to
multiple other tiles, cache translation tables may grow in
number of entries. Eventually each virtual cache may corre-
spond to almost all physical caches. Cache translation tables
may be cleaned using a variety of methods. For example,
when a thread migrates from one cache to another, a timer
may be added to the cache corresponding to the tile the thread
ran on prior to migration. After the timer reaches a defined
time out value, the sending tile may broadcast a message to
tiles in the die. The message may include an instruction to the
tiles to remove mapping of the sending cache to the virtual
cache. Blocks in an original cache may be marked with a flag
indicating their temporary nature. As blocks move from the
original cache to a new cache where the thread migrates to,
the flag for the blocks may be reset. Upon a time out, blocks
in the cache with the set flag may be invalidated, and data may
be written back if necessary. Alternatively, if the number of
blocks with the set flag falls below a threshold value, the
blocks in the cache may also be invalidated, and data may be
written back if necessary.

Among other possible benefits, a system in accordance
with the disclosure may provide easier, more efficient and
faster thread transfer. Less protocol hops may be used. More-
over, as threads may be transferred to physically close tiles,
less network hops may be used when transferring data blocks
from the original tile to the new tile, resulting in a faster and
more energy efficient data transfer. The cache coherence pro-
tocol need not be involved in the thread transfer, and the
directory for the die need not be updated in thread transfer.
The directory may keep track of data sharing by keeping track
of information in virtual caches rather than physical caches,
and hence no directory coherence information changes when
data is transferred between two physical caches that a virtual
cache maps to.

FIG. 2 depicts a flow diagram for an example process for
implementing a virtual cache directory in a multi-processor
architecture arranged in accordance with at least some
embodiments described herein. In some examples, the pro-
cess in FIG. 2 could be implemented using system 100 dis-
cussed above and may be used for transferring a thread from
a first tile to a second tile in a multi-core processor die.

An example process may include one or more operations,
actions, or functions as illustrated by one or more of blocks
S2,54,S6,S8,S10,S12, S14, S16, S18, and/or S20. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the desired implementation. Blocks S2,
S4, S6, S18 and S20 are depicted as operations, actions or
functions that can be executed by a first tile in a die; while
blocks S8, S10, S12, S14 and S16 are depicted as operations,
actions or functions that can be executed by a second tile in a
die.

Processing may begin at block S2, “Receive a first mes-
sage, the first message corresponds to a request to transfer a
thread to a second tile.” A processor in the first tile may

US 9,047,194 B2

7

receive the first message, such as by a communication bus in
the die, corresponding to a request to transfer a thread to a
second tile. The first tile may include a first cache and the
second tile may include a second cache.

Processing may continue from block S2 to block S4, “Send
a second message from the first tile to a second tile, the second
message corresponds to an instruction to map a virtual cache
identifier to a first cache identifier corresponding to the first
cache, and to map the virtual cache identifier to a second
cache identifier corresponding to the second cache.” The sec-
ond message may also update cache translation tables in die
102. At block S4, a processor in the first tile may send a
message, such as through the bus or the interconnect network,
including an instruction to map a virtual cache identifier to the
first cache identifier and the second cache identifier. This may
allow for quicker cache coherence than if a directory were
consulted during every transfer of a data block. Processing
may continue from block S4 to block S8, “Receive second
message”. Atblock S8, the second tile may receive the second
message through the bus.

Processing may also continue from block S4 to block S6,
“Transfer the thread from the first tile to the second tile.” At
block S6, the thread may be transferred, such as by a com-
munication bus, by moving, sending, assigning, migrating,
etc.

Processing may continue from block S6 to block S10,
“Generate a third message corresponding to a request for a
datablock.” At block S10, the processor in the second tile may
generate a request for a data block. Processing may continue
from block S10 to block S12, “Determine that the data block
is not stored in the second cache.”” At block S12, the second
tile may analyze the second cache and determine that the data
block is not stored in the second cache such as what may
occur in a cache miss.

Processing may continue from block S12 to block S14,
“Determine that the virtual cache identifier is mapped to the
first cache identifier and to the second cache identifier”” At
block S14, the second tile may analyze a cache translation
table and determine that the virtual cache identifier is mapped
for the first and second cache identifier which may suggest
that the block may be stored in the first tile.

Processing may continue from block S14 to block S16,
“Send a fourth message that corresponds to a request for the
data block.” At block S16, the second tile may send a request
over the bus or the interconnect network to the first tile for the
data block. Processing may continue from block S16 to block
S18, “Receive fourth message.” At block S18, the first tile
may receive the fourth message. Processing may continue
from block S18 to block S20, “Send the data block from the
first tile to the second tile”” Blocks S10 through S20 may be
repeated for different blocks that are transferred.

FIG. 3 depicts a signal flow diagram for an example pro-
cess for implementing a virtual cache directory in a multi-
processor architecture arranged in accordance with at least
some embodiments described herein. In some examples, the
process in FIG. 3 could be implemented using system 100
discussed above and may be used for transferring a thread
from a first tile to a second tile in a multi-core processor die.

An example process may include one or more operations,
actions, or functions as illustrated by one or more of opera-
tions 02, 04,06, 08,010, 012,014,016, 018, and/or O20.
Operations 02, 04, 06, 018 and 020 are depicted as opera-
tions can be processed by the first tile; while operations OS,
010,012,014 and 016 are depicted as operations that can be
processed by the second tile. Although illustrated as discrete
operations, various operations may be divided into additional

5

10

15

20

25

30

35

40

45

50

55

60

65

8

operations, combined into fewer operations, or eliminated,
depending on the desired implementation.

Processing may begin at operation O2, “Receive a first
message, the first message corresponds to a request to transfer
athread to asecond tile.” A processor in a first tile may receive
the first message, such as by a communication bus in the die,
corresponding to a request to transfer a thread to a second tile.
The first tile may include a first cache and the second tile may
include a second cache.

Atoperation O4, “Send a second message from the first tile
to a second tile, the second message corresponds to an
instruction to map a virtual cache identifier to a first cache
identifier corresponding to the first cache, and to map the
virtual cache identifier to a second cache identifier corre-
sponding to the second cache.”” At operation O4, a processor
in the first tile may send a message, such as through the bus or
the interconnect network, including an instruction to map a
virtual cache identifier to the first cache identifier and the
second cache identifier. This message may update cache
translation tables in tile 102. This may allow for quicker cache
coherence than if a directory were consulted during every
transfer of a data block. Processing may continue from opera-
tion O4 to operation O8, “Receive second message”. At
operation O8, the second tile may receive the second message
through the bus.

Processing may also continue from operation O4 to opera-
tion O6, “Transfer the thread from the first tile to the second
tile.” At operation O6, the thread may be transferred, such as
by a communication bus, by scheduling, moving, sending,
assigning, migrating, etc.

Processing may continue from operation O6 to operation
010, “Generate a third message corresponding to a request
for a data block.” At operation O10, a processor in the second
tile may generate a request for a data block. Processing may
continue from operation 010 to operation 012, “Determine
that the data block is not stored in the second cache.” At
operation 012, the second tile may analyze the second cache
and determine that the data block is not stored in the second
cache such as what may occur in a cache miss.

Processing may continue from operation O12 to operation
014, “Determine that the virtual cache identifier is mapped to
the first cache identifier and to the second cache identifier”” At
operation O14, the second tile may analyze a cache transla-
tion table and determine that the virtual cache identifier is
mapped for the first and second cache identifier which may
suggest that the block may be stored in the first tile.

Processing may continue from operation O14 to operation
016, “Send a fourth message that corresponds to a request for
the data block.” At operation O16, the second tile may send a
request over the bus to the first tile for the data block. Pro-
cessing may continue from operation O16 to operation O18,
“Receive fourth message.” At operation O18, the first tile may
receive the fourth message. Processing may continue from
operation O18 to operation 020, “Send the data block from
the first tile to the second tile.” Operations O10 through 020
may be repeated for different blocks that are transferred.

FIG. 4 illustrates an example computer program product
300 that can be utilized to implement a virtual cache directory
in a multi-processor architecture arranged in accordance with
at least some embodiments described herein. Program prod-
uct 300 may include a signal bearing medium 302. Signal
bearing medium 302 may include one or more instructions
304 that, when executed by, for example, a processor, may
provide the functionality described above with respect to
FIGS. 1-3. Thus, for example, referring to system 100, one or
more of processors 112 in tiles 118, 130-144 may undertake

US 9,047,194 B2

9

one or more of the blocks shown in FIG. 4 in response to
instructions 304 conveyed to the system 100 by medium 302.

In some implementations, signal bearing medium 302 may
encompass a computer-readable medium 306, such as, but not
limited to, a hard disk drive, a Compact Disc (CD), a Digital
Video Disk (DVD), a digital tape, memory, etc. In some
implementations, signal bearing medium 302 may encom-
pass a recordable medium 308, such as, but not limited to,
memory, read/write (R/W) CDs, R/W DVDs, etc. In some
implementations, signal bearing medium 302 may encom-
pass a communications medium 310, such as, but not limited
to, a digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.). Thus, for example, pro-
gram product 300 may be conveyed to one or more modules
of the system 100 by an RF signal bearing medium 302,
where the signal bearing medium 302 is conveyed by a wire-
less communications medium 310 (e.g., a wireless commu-
nications medium conforming with the IEEE 802.11 stan-
dard).

FIG. 5 is a block diagram illustrating an example comput-
ing device 400 that is arranged to implement a virtual cache
directory in a multi-processor architecture arranged in accor-
dance with at least some embodiments described herein. In a
very basic configuration 402, computing device 400 typically
includes one or more processors 404 and a system memory
406. A memory bus 408 may be used for communicating
between processor 404 and system memory 406.

Depending on the desired configuration, processor 404
may be of any type including but not limited to a micropro-
cessor (LP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 404 may
include one more levels of caching, such as a level one cache
410 and a level two cache 412, a processor core 414, and
registers 416. An example processor core 414 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina-
tion thereof. An example memory controller 418 may also be
used with processor 404, or in some implementations
memory controller 418 may be an internal part of processor
404.

Depending on the desired configuration, system memory
406 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof. Sys-
tem memory 406 may include an operating system 420, one
or more applications 422, and program data 424. Application
422 may include a virtual cache directory algorithm 426 that
is arranged to perform the functions as described herein
including those described with respect to system 100 of FIG.
1. Program data 424 may include virtual cache directory data
428 that may be useful to implement a virtual cache directory
in multi-processor architectures as is described herein. In
some embodiments, application 422 may be arranged to oper-
ate with program data 424 on operating system 420 such that
avirtual cache directory in multi-processor architectures may
be provided. This described basic configuration 402 is illus-
trated in FIG. 5 by those components within the inner dashed
line.

Computing device 400 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 402 and any required
devices and interfaces. For example, a bus/interface control-
ler 430 may be used to facilitate communications between
basic configuration 402 and one or more data storage devices
432 via a storage interface bus 434. Data storage devices 432
may be removable storage devices 436, non-removable stor-

10

15

20

25

30

40

45

50

55

60

65

10

age devices 438, or a combination thereof. Examples of
removable storage and non-removable storage devices
include magnetic disk devices such as flexible disk drives and
hard-disk drives (HDD), optical disk drives such as compact
disk (CD) drives or digital versatile disk (DVD) drives, solid
state drives (SSD), and tape drives to name a few. Example
computer storage media may include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

System memory 406, removable storage devices 436 and
non-removable storage devices 438 are examples of com-
puter storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by computing device
400. Any such computer storage media may be part of com-
puting device 400.

Computing device 400 may also include an interface bus
440 for facilitating communication from various interface
devices (e.g., output devices 442, peripheral interfaces 444,
and communication devices 446) to basic configuration 402
via bus/interface controller 430. Example output devices 442
include a graphics processing unit 448 and an audio process-
ing unit 450, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 452. Example peripheral interfaces 444
include a serial interface controller 454 or a parallel interface
controller 456, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 458. An example communication device 446
includes a network controller 460, which may be arranged to
facilitate communications with one or more other computing
devices 462 over a network communication link via one or
more communication ports 464.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

Computing device 400 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 400 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which

US 9,047,194 B2

11

are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav-
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” is used,
in general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or

10

15

20

25

30

35

40

45

50

55

60

65

12

phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the art
will recognize that the disclosure is also thereby described in
terms of any individual member or subgroup of members of
the Markush group.

As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” “greater than,”
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down into sub-
ranges as discussed above. Finally, as will be understood by
one skilled in the art, a range includes each individual mem-
ber. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

29 <

What is claimed is:
1. A method to transfer a thread from a first tile to a second
tile in a multi-core processor die, the method comprising:

receiving a first message at the first tile, wherein the first
message corresponds to a request to transfer the thread
from the first tile to the second tile, the first tile having a
first cache, the second tile having a second cache;

in response to the first message, sending a second message
from the first tile to a second tile, wherein the second
message corresponds to an instruction to map a virtual
cache identifier to a first cache identifier corresponding
to the first cache, and to map the virtual cache identifier
to a second cache identifier corresponding to the second
cache, wherein, in response to the instruction, the virtual
cache identifier is mapped to the first and second cache
identifiers;

after sending the second message, transferring the thread
from the first tile to the second tile;

after transferring the thread, generating a third message at
the second tile, wherein the third message corresponds
to a first request for a data block to be sent to the second
tile;

in response to the third message, determining that the data
block is not stored in the second cache;

in response to the third message, determining that the vir-
tual cache identifier is mapped to the first cache identi-
fier and to the second cache identifier;

in response to determining that the virtual cache identifier
is mapped to the first cache identifier and the virtual
cache identifier is mapped to the second cache identifier,
sending a fourth message from the second tile to the first

US 9,047,194 B2

13

tile, wherein the fourth message corresponds to a second
request for the data block to be sent to the second tile;
and

in response to the fourth message, sending the data block

from the first tile to the second tile.

2. The method as recited in claim 1, further comprising:

receiving the second message by a third tile, the third tile

including a directory for the die;

sending a fifth message from the second tile to the third tile,

the fifth message corresponding to a request to write to
the data block;

receiving the fifth message at the third tile;

after receiving the fifth message at the third tile, determin-

ing, at the third tile, that the virtual cache identifier is
mapped to the first cache identifier and to the second
cache identifier and sending a sixth message, by the third
tile to the first tile, wherein the sixth message corre-
sponds to an instruction to invalidate the data block in
the first cache; and

after sending the sixth message, updating the directory by

the third tile to indicate that a status of the data block is
modified.

3. The method as recited in claim 1, further comprising,
after sending the second message, receiving an acknowledge-
ment at the first tile that at least the second tile in the die
received the second message.

4. The method as recited in claim 1, further comprising,
after sending the data block, invalidating, by the first tile, the
data block in the first cache.

5. The method as recited in claim 1, further comprising,
after sending the data block:

invalidating, by the first tile, the data block in the first

cache; and

after sending the second message, receiving an acknowl-

edgement at the first tile that at least the second tile in the
die received the second message.

6. The method as recited in claim 1, further comprising:

receiving the second message by a third tile, the third tile

including a directory for the die;

sending a fifth message from the second tile to the third tile,

the fifth message corresponding to a request to write to
the data block;

receiving the fifth message at the third tile;

in response to the fifth message, determining, at the third

tile, that the virtual cache identifier is mapped to the first
cache identifier and to the second cache identifier;
in response to determining that the virtual cache identifier
is mapped to the first cache identifier and to the second
cache identifier, sending a sixth message by the third tile
to the first tile, the sixth message corresponding to an
instruction to invalidate the data block in the first cache;

after sending the sixth message, updating the directory by
the third tile to indicate that a status of the data block is
modified; and

after sending the sixth message, invalidating, by the first

tile, the data block in the first cache.

7. The method as recited in claim 1, further comprising:

receiving the second message by a third tile, the third tile

including a directory for the die;

sending a fifth message to the third tile from a fourth tile,

the fifth message corresponding to a request to write to
the data block;

receiving the fifth message at the third tile;

in response to the fitth message, determining, by the third

tile, that the data block is mapped to the virtual cache
identifier and determining, at the third tile, that the vir-

5

10

15

20

25

30

35

40

45

50

55

60

14

tual cache identifier is mapped to the first cache identi-
fier and to the second cache identifier;
after determining that the virtual cache identifier is mapped
to the first cache identifier and to the second cache iden-
tifier, sending, by the third tile, a sixth message to the
first tile, wherein the sixth message corresponds to a
request to send the data block to the fourth tile;
after determining that the virtual cache identifier is mapped
to the first cache identifier and to the second cache iden-
tifier, sending, by the third tile, a seventh message to the
second tile, wherein the seventh message corresponds to
a request to send the data block to the fourth tile;
after sending the sixth message, sending, by the third tile,
an eighth message to the first tile, wherein the eighth
message corresponds to an instruction to invalidate the
data block in the first cache;
after sending the seventh message, sending, by the third
tile, a ninth message to the second tile, wherein the ninth
message corresponds to an instruction to invalidate the
data block in the second cache; and
after sending the sixth and seventh messages, updating the
directory by the third tile to indicate that a status of the
data block is modified.
8. The method as recited in claim 1, further comprising:
adding a timer to the first cache after transferring the thread
from the first tile to the second tile; and
aperiod of time after adding the timer, sending, by the first
tile, a fifth message to at least the second tile, wherein the
fifth message includes an instruction to remove the map
of the virtual cache identifier to the first cache identifier.
9. The method as recited in claim 1, wherein the data block
is a particular data block and the method further comprises:
marking at least some data blocks with a flag in the first tile;
after sending the particular data block from the first tile to
the second tile, removing a particular flag corresponding
to the particular data block;
counting a number of data blocks with the flag;
determining whether the number of data blocks with the
flag is below a threshold value; and
after determining that the number of data blocks with the
flag is below the threshold value, invalidating and/or
writing back data blocks in the first tile that have the flag.
10. A system effective to send a data block from a first tile
in a multi-core processor die, the system comprising:
the first tile, the first tile includes a first processor in com-
munication with a first cache;
the first processor effective to:
send a first message, from the first tile to a second tile in
the die, wherein the first message corresponds to:
aninstruction to map a virtual cache identifier to a first
cache identifier, wherein the first cache identifier
corresponds to the first cache, and
an instruction to map the virtual cache identifier to a
second cache identifier, wherein the second cache
identifier corresponds to a second cache in a second
tile;
transfer a thread from the first tile to the second tile;
receive a request from the second tile for a data block to
be sent to the second tile; and
send the data block from the first tile to the second tile.
11. The system as recited in claim 10, wherein the first
processor is further effective to receive a second message
from a third tile, wherein the second message corresponds to
an instruction to invalidate the data block in the first cache,
and wherein the third tile includes a directory for the die.
12. The system as recited in claim 10, wherein the first
processor is further effective to receive a second message

US 9,047,194 B2

15

from the second tile, the second message corresponds to an
acknowledgement that the second tile received the first mes-
sage.

13. The system as recited in claim 10, wherein the first
processor is further effective to invalidate the data block in the
first cache.

14. The system as recited in claim 10, wherein the first
processor is further effective to:

invalidate the data block in the first cache; and

send a second message to a third tile, wherein the second

message corresponds to an instruction that the data
block is invalid in the first cache, and wherein the third
tile includes a directory for the die.

15. The system as recited in claim 10, wherein the first
processor is further effective to:

add a time stamp to the first cache after the thread is sent

from the first tile to the second tile; and

after a period of time, send a second message to at least the

second tile, wherein the second message corresponds to
an instruction to remove the map of the virtual cache
identifier to the first cache identifier.

16. The system as recited in claim 10, wherein the data
block is a particular data block and the first processor is
further effective to:

mark the particular data block with a particular flag;

mark at least some other data blocks in the first tile with

other flags;

after the particular data block is sent from the first tile to the

second tile, remove the particular flag; and

invalidate at least one of the other data blocks in the first tile

that includes at least one of the other flags.

17. A method to request a data block from a first tile with a
first cache by a second tile with a second cache in a multi-core
processor die, the method comprising:

receiving a first message from the first tile at the second tile,

the first message including an instruction to map a vir-
tual cache identifier to a first cache identifier corre-
sponding to the first cache, and to map the virtual cache
identifier to a second cache identifier corresponding to
the cache;

mapping the virtual cache identifier to the first cache iden-

tifier;

mapping the virtual cache identifier to the second cache

identifier;

after receiving the first message, receiving a thread at the

second tile from the first tile;

after receiving the thread, generating a second message at

the second tile, the second message corresponding to a
first request for the data block to be sent to the second
tile;

in response to the second message, determining, at the

second tile that the data block is not stored in the second
cache;

in response to the second message, determining, at the

second tile, that the virtual cache identifier is mapped to
the first cache identifier;

in response to the second message, determining, at the

second tile, that the virtual cache identifier is mapped to
the second cache identifier; and

sending a third message from the second tile to the first tile,

wherein the third message corresponds to a second
request for the data block to be sent to the second tile.

10

15

20

25

30

35

40

45

50

55

60

16

18. The method as recited in claim 17, further comprising:

receiving the first message by a third tile, the third tile
including a directory for the die;

sending a fourth message from the second tile to the third
tile, wherein the fourth message corresponds to a request
to write to the data block;

receiving the fourth message by the third tile after receiv-
ing the first message;

after receiving the fourth message at the third tile, deter-
mining, at the third tile, that the virtual cache identifier is
mapped to the first cache identifier and to the second
cache identifier; and

sending, by the third tile to the first tile, a sixth message,
wherein the sixth message corresponds to an instruction
to invalidate the data block in the first tile.

19. The method as recited in claim 17, further comprising:

receiving the first message by a third tile, the third tile
including a directory for the die;

sending a fourth message from the second tile to the third
tile, wherein the fourth message corresponds to a request
to write to the data block;

receiving the fourth message by the third tile after receiv-
ing the first message;

after receiving the fourth message at the third tile, deter-
mining, at the third tile, that the virtual cache identifier is
mapped to the first cache identifier and to the second
cache identifier, and sending, by the third tile to the first
tile, a fifth message, wherein the fifth message corre-
sponds to an instruction to invalidate the data block in
the first tile; and

after sending the fifth message, updating the directory to
indicate that a status of the data block is modified.

20. The method as recited in claim 17, further comprising:

receiving the first message by a third tile, the third tile
including a directory for the die;

sending a fourth message from a fourth tile to the third tile,
wherein the fourth message corresponds to a request to
write to the data block;

receiving the fourth message at the third tile after receiving
the first message;

after receiving the fourth message at the third tile, deter-
mining, by the third tile, that the data block is mapped to
the virtual cache identifier;

determining, at the third tile, that the virtual cache identi-
fier is mapped to the first cache identifier and to the
second cache identifier;

after determining that the virtual cache identifier is mapped
to the first cache identifier and to the second cache iden-
tifier, sending, by the third tile, a fifth message to the first
tile, wherein the fifth message corresponds to an instruc-
tion to send the data block to the fourth tile;

after determining that the virtual cache identifier is mapped
to the first cache identifier and to the second cache iden-
tifier, sending, by the third tile, a sixth message to the
second tile, wherein the sixth message corresponds to a
request to send the data block to the fourth tile;

after sending the fifth message, sending, by the third tile, a
seventh message to the first tile, the seventh message
corresponds to an instruction to invalidate the data block
in the first cache; and

after sending the sixth message, sending, by the third tile,
an eighth message to the second tile, wherein the eighth
message corresponds to an instruction to invalidate the
data block in the second cache.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,047,194 B2 Page 1 of 1
APPLICATION NO. : 13/818485

DATED : June 2, 2015

INVENTOR(S) : Solihin

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the drawings:
In Fig. 4, Sheet 4 of 5, for Tag “304”, in Line 13, delete “identificr” and insert -- identifier --, therefor.
In the specification:
In Column 1, Line 8, delete “35 U.S.C. §371” and insert -- 35 U.S.C. § 371 --, therefor.

In Column 4, Line 30, delete “owned (0)” and insert -- owned (O) --, therefor.

Signed and Sealed this
Nineteenth Day of January, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

